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Abstract
Layer compounds exhibit highly anisotropic structural and elastic properties.
They are characterized by rather rigid layers, loosely stacked together
perpendicular to each other. Accordingly, the phonon dispersion of layered
compounds are characterized by low lying inter-layer modes and high-
frequency intra-layer modes. Intercalation compounds composed of a regular
sequence of host and guest layers provide a playground for the investigation
of the layer lattice dynamics by systematically changing the guest species and
the number of guest layers per unit cell. In this contribution a brief overview
of some characteristic features of the lattice dynamics of layered compounds is
provided.

1. Introduction

Layer compounds exhibit highly anisotropic structural and elastic properties. They are
characterized by rather rigid layers, loosely stacked together perpendicular to each other.
Layered compounds can quite frequently be found in nature in form of clays or graphite
materials. Also sulfide, selenide and telluride compounds together with transition metals
form layered compounds, such as MoS2, TaS2 or GeSe. In a broader sense copper oxide
compounds with high-temperature superconductivity also belong to this class of material.
Layered compounds often can be intercalated with other chemical species of molecules,
forming layered intercalation compounds. Graphite and its numerous intercalation compounds
may be the best known layered guest–host system. For a general review of these compounds
the reader is referred to [1]. In figure 1 the schematics of layered compounds and the different
possibilities for intercalation of the host layers are displayed. In the first class the host consists
of monolayers and the number of host layers (n) between any consecutive intercalate layer
characterizes the stage n of the compound. In the second class the host layer consists of a
triple layer usually forming only a stage 1 compound. In the third class the host layers have
a complex internal architecture, and after intercalation to a stage 1 compound the number of
intercalated layers per gap can be varied.
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Figure 1. Schematic diagrams of the various classes of layered compounds before and after
intercalation. Before intercalation the compound may consist of single layers, or a stack of several
layers, in some cases with complex internal structure. After intercalation several different stages
may form in case of the class 1 compounds, where the stage n is defined as the number of host layers
between any consecutive intercalate layers. The class 2 compounds form only stage 1 compounds.
In the class 3 compounds several guest layers may intercalate within any particular gap of the host
system.

Graphite and, in particular, graphite intercalation compounds (GICs) with a regular
sequence of alternating intercalate layers and graphite basal planes (also termed ‘graphene
layers’) belong to the first class of intercalation compounds. They represent a unique laboratory
for the exploration of phonons in layered materials. By changing the intercalate species,
the stage of the compound, or the intercalate in-plane stoichiometry, the symmetry and
interaction can be altered in a systematic fashion, allowing detailed investigations of the
relation between structure and phonons. In addition, the intercalated layers in graphite display
a rich variety of ordered and disordered structures, commensurate and incommensurate phases,
melting transitions on periodic substrates, and metal–insulator transitions. In all these cases
examination of the lattice dynamics is of prime interest for obtaining interatomic potentials,
which, in turn, leads to an accurate modelling of the structures, dynamics, and phase transitions
in these compounds.

2. Basic concepts of layer lattice dynamics

The lattice dynamics of layered compounds can be classified as high-frequency intra-layer
modes and low-frequency inter-layer modes. The different eigenmodes are schematically
sketched in figure 2 for the case of GICs. The energy separation between the inter- and
intralayer modes is a measure for the elastic anisotropy of the material. In addition we find
modes specific to the intercalate atoms or molecules. These comprise either simple in-plane
longitudinal and transverse modes in the case of monoatomic intercalate layers or more complex
intra-molecular modes in the case of molecular intercalates.

In figure 3 the dispersion of the low lying modes is sketched within an energy regime
accessible to inelastic neutron scattering work. These modes comprise the acoustic and optic
branches of the [00q] longitudinal modes (L) (‘layer breathing modes’) and the [00q] transverse
modes (T) or ‘layer shear modes’. Both modes propagate perpendicular to the graphite and
intercalate layers. The layered structure of the compounds leads, in addition, to very soft
[q00]T modes, which propagate parallel to the layers with polarization perpendicular to the
graphene and intercalate planes. These modes are commonly referred to as ‘layer bending’ or
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Layer lattice dynamics
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Figure 2. Schematic diagram of the layer lattice dynamics of GICs. The lattice dynamics is
characterized by high-frequency intralayer modes and low-frequency interlayer modes. The latter
modes separate in layer breathing, layer shear and bending modes, as shown in figure 3. In addition,
after intercalation intercalate modes may appear, which are characteristic for the intercalate species.
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Figure 3. The phonon dispersion of the low lying modes in GICs and other layered compounds is
schematically shown. The layered nature of the compounds and the high elastic anisotropy can be
immediately recognized by the presence of layer bending modes with quadratic dispersion.

‘ripple’ modes.
The full exploration of the lattice dynamics of GICs via inelastic neutron scattering is

hampered by the lack of sufficiently large single crystals. Therefore, all phonon data from
neutron scattering are derived from highly oriented pyrolytic graphite (HOPG) materials.
HOPG is a textured material with a c-axis mosaicity 0.2–3◦, depending on the quality of
the material, and a completely random in-plane orientation. The two-dimensional powder
nature of this material has no effect on the [00q]L phonons which propagate along the oriented
c-axis. In fact, the [00q]L modes are the most frequently measured phonon modes of GICs.
The [q00]T modes are also rather well defined in spite of the powder average (HK0) plane,
owing to the close elastic isotropy of the graphite and intercalate planes. All other modes are
more difficult to determine and have been measured only in a few cases. For further information
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Figure 4. Measured phonon energies of [00q]L modes in KCn alkali-metal GICs at room
temperature. The full curves represent best fits to the phonon energies with one-dimensional
lattice dynamical models described in the text (from [3]).

and historical remarks the reader is referred to a more detailed review paper on this subject
in [2].

3. Layer breathing or [00q]L modes

3.1. The effect of staging

The effect of staging on the phonon dispersion of the [00q]L modes is clearly seen by the
sequence of potassium-GICs from stage 1 to 3, whose phonon energies are reproduced in
figure 4 [3]. An increase of the stage number by one results in the appearance of an additional
optic branch. For all stages, zone folding and mode splitting effects are clearly visible. The
highest optic branch is predominantly determined by the vibrational amplitude of the planes
with the smallest effective mass. These are the potassium layers in all three K-GICs. It should
be noted that with increasing stage number the dispersion of the top optic branch becomes
flatter, indicating that the coupling between the alkali-metal planes weakens from stage 1 to 3.
This will be discussed in more detail below.

The [00q]L phonon dispersion of GICs can be described as the dispersion of linear chains
of mass points, representing the graphene and intercalate layers. Therefore, the dispersion
depends on the areal mass densities of the intercalate layers, the force constants between the
layers and the number of layers within a repeat unit. For the case of alkali-metal GICs, a stage
n compounds contains n + 1 layers, n graphene layers between consecutive intercalate layers
and one intercalate layer. Then the dispersion consists of n + 1 phonon branches, one acoustic
branch and n optic branches. The full curves in figure 4 are fits to the data points with a very
simple Born–von Karman (BvK) lattice dynamical model taking into account the graphite
mass MC in atomic mass units (MC = 12 au), the intercalate effective mass per layer and per
carbon atom: Meff = MK/x, where MK is in atomic units and x is the layer stoichiometry,
a force constant φI connecting the intercalate and the bounding graphene layers and a force
constant φC for the inner graphene layers. The fit can be dramatically improved by introducing
a third force constant φ′, connecting the graphene layers across an intercalate layers [4]. An
alternative mixed ion–shell and BvK model was proposed to account for the charge transfer
and the ionic character of the intercalate layers [3, 5]. In this model the interaction between
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Figure 5. The effective mass of the intercalate layer determines the dispersion of the optical branch
of the [00q]L modes in the stage 1 compounds of KC8, RbC8 and CsC8. The effective mass of the
potassium intercalate plane is lighter than the graphene plane, explaining the high optic branch and
the large gap at the zone boundary. The effective mass of the rubidium intercalate layer is almost
identical to that of graphene, while the effective mass of the cesium intercalate layer is heavier than
the graphene layer (from [3]).

the intercalate and bounding graphene layers is mediated by an electronic shell whose mass is
assumed to be zero. The shell is coupled to the core of the alkali-metal ion by a force constant
φK and to the bounding graphite layers by the shell force constant φS .

3.2. The effect of intercalate mass

The effect of the intercalate mass on the phonon energies is best demonstrated by the series
of stage 1 compounds KC8, RbC8 and CsC8, the phonon dispersions of which are reproduced
in figure 5. For all three compounds the symmetry along the c-axis and the number ratio
of intercalate to carbon atoms is the same, and there are only small differences in the force
constants. The dominant effect is attributable to the in-plane effective mass of the intercalate
layer. In KC8, with the lightest intercalate mass, the optic branch is well separated from the
acoustic branch by a large frequency gap. The Rb intercalate layer has an effective mass which
is only slightly smaller than that of the graphene plane. Therefore the mode splitting at the
Brillouin zone boundary is only marginal. Finally, in CsC8 the Cs layer is heavier than the
graphene layer, reversing the role of vibrating planes at the Brillouin zone boundary.

3.3. Localized modes

The Einstein-like behaviour of the top optic mode in high stage compounds can be modelled
assuming a single alkali-metal layer intercalated in an otherwise pure graphite crystal.
Coupling this layer to the adjacent graphene layers by a force constant φI , and the graphite
layers via the usual force constant φC , this simple model predicts a vibrational amplitude of the
defect mode which is exponentially damped proportional to the mass difference �M between
the intercalate and graphite layers. Figure 6 shows the vibrational amplitude for isolated K,
Rb and Cs layers in graphite as a function of the number of graphite planes s away from the
intercalate layer. Due to the large mass mismatch, the K vibrational amplitude is most strongly
attenuated and the wavefunction of the localized mode does not extend much further than one
graphite layer from its origin. This explains the weak dispersion of the K optic branch in the
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stage 3 K-GIC. On the other hand, the Cs layers in compounds with n � 2 have an effective
mass of 11.08 au, which is closely matched toMC . Therefore, the local vibration can propagate
over several graphite planes. Consequently, the top optic branch of CsC36 should exhibit more
dispersion, which is indeed the case [4].
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Figure 6. Amplitude of longitudinal vibrations of isolated intercalate layers in graphite against the
number of graphite layers away from the intercalates at the origin.

4. [q00]T phonon dispersion

One of the most intriguing features of layered compounds are the [q00]T modes with a
parabolic dispersion relation at small phonon wavenumbers: ω ∝ q2. These phonon modes
are fingerprints for the layered nature of the compound in question with weak interlayer shear
interaction. They are characteristic of the bending of single isolated sheets of homogeneous
material and are therefore referred to as bending modes or ripple modes. Increasing the shear
interaction between neighbouring layers causes the dispersion to have a non-zero slope at
q = 0. Therefore the dispersion for small q can be written

ω2 = Aq2 + Bq4. (1)

The slope A1/2 at q = 0 is given by (C44/ρ)
1/2, where C44 is the layer shear elastic constant

and ρ is the volume density. This is the same elastic constant as determines the slope of the
acoustic [00q]T branch. While it is very difficult to measure, by inelastic neutron scattering,
the extremely soft [00q]T modes, the analysis of the bending modes also yields information
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on the layer shear interaction. B is the parameter determining the resistance of the layer
to bending, referred to as the ‘bending stiffness constant’. Both parameters, B and C44,
can be obtained from the acoustic dispersion relation by plotting ω2/q2 as a function of q2.
Since all experimental data on [q00]T modes in GICs were obtained using intercalated HOPG
material, constant Q scans are not capable of distinguishing between phonons propagating
along the [100] or [110] directions. However, owing to the relative elastic isotropy of the
graphite and intercalate planes, no essential difference for both directions is expected. Early
measurements of layer bending modes have been carried out on pristine graphite by Nicklow
et al [6] and subsequently on some transition-metal dichalcogenides, in particular on 2H-
MoS2 by Wakabayashi and Nicklow [7]. However, only the GICs with the large variety of
intercalates and stages allow a systematic exploration of these modes and their dependence on
phase transitions and charge transfer effects.

The [q00]T modes in donor compounds have been investigated by a number of authors
[8, 9]. Experimental results from room-temperature measurements of stage 1 compounds are
shown in figure 7. In all cases the quadratic dispersion of the acoustic branch is clearly visible.
While the dispersion of the acoustic branch is determined by the bending stiffness constant of
the combined graphite and intercalate layers, the dispersion of the optic branches is sensitive to
the bending modulus of the individual layers. Analysis of the bending modes show that in GICs
the bending stiffness constant is dominated by the graphene layers, whereas the alkali-metal
intercalate layers are rather ‘floppy’.

5. Phonon density of states of intercalate modes

For most of the phonon modes discussed so far, the intercalate and host graphite displacements
are coupled. This is the case to a much lesser extent for the intercalate in-plane modes with
propagation and polarization parallel to the planes. In the plane, the extremely strong C–C
interaction leads to [q00]T and [q00]L dispersions with very steep slopes (see figure 3).
The bonds between the intercalate atoms or molecules are usually much weaker and their
vibration is therefore essentially decoupled from the graphite modes. Because of the lack of
single crystals, the dispersion of the intercalate in-plane modes is difficult to measure. It is
therefore better practice to determine both the longitudinal and transverse modes via phonon-
density-of-state (PDS) measurements. In general, PDSs are obtained via incoherent mixing
and averaging of phonon modes, usually achieved using nuclei with predominant incoherent
scattering cross sections for thermal neutron scattering. For alkali-metal intercalate atoms the
scattering lengths are, however, exclusively coherent, The same effect of incoherent mixing
is then achieved by adding and averaging the coherent phonon signal over many Brillouin
zones. This procedure is termed the ‘incoherent approximation’ [10]. In case of GICs and
because of the large disparity between the graphite and intercalate vibrational frequencies,
partial PDSs of the intercalate modes with propagation and polarization parallel to the layers
are obtained:

S(Q, ν) = αQ2σ

MIν
[n(ν) + 1]e−2WI g(ν) + L(Q, ν). (2)

Here n(ν) is the Bose–Einstein occupation number; MI and σ are the mass and the cross
section of the intercalate species, respectively; α is a constant; WI is the Debye–Waller factor
for the intercalate in-plane vibration; and ν = 2π/ω is the vibrational frequency. The first term
in the above equation represents the one-phonon dynamical scattering function, from which
the PDSs g(ν) can be calculated. The second term, L(Q, ν), collects all contributions from
multiphonon processes, which is usually a smooth function of ν and not easily distinguished
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Figure 7. Measured phonon dispersions of [q00]T modes in stage 1 alkali-metal GICs. The left-
hand panels reproduce the [00q]L modes and the right-hand panels show the bending modes. The
figure was compiled from the following references: KC8 and CsC8 from [9] and RbC8 from [8].

from a uniform background. Nonetheless, the PDS data shown below have been corrected
for two-phonon contributions and for graphite contributions via procedures described in
[11].

The PDS of a two-dimensional lattice is expected to increase linearly with ν at small
frequencies (g(ν) ∝ ν) and should exhibit two peaks at larger frequencies from the flat parts
of the transverse and longitudinal dispersion close to the Brillouin zone boundary. Turning on
the substrate potential causes a gap to occur in the PDS of the size ν0 = (1/2π)(φIC/MI )

1/2,
whereφIC represents the intercalate–graphite in-plane coupling constant, which is proportional
to the curvature of the corrugated substrate potential. Therefore, measuring the PDSs yields
important information on the intercalate–intercalate in-plane interaction as well as on the
strength of the substrate potential.

5.1. In-plane PDSs in stage 1 alkali-metal compounds

Experimental results of PDS measurements for the alkali-metal in-plane modes in the stage 1
compounds IC8 (I = K, Rb, Cs) are shown in figure 8. In the energy region scanned,
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Figure 8. Measured PDSs of alkali-metal in-plane modes in stage 1 compounds. The broken
curves are derived from a Coulomb force model. The model spectra have been braodened to take
instrumental resolution effects into account. The full curves are guides to the eye (from [11, 12]).

the corresponding PDSs of the graphite host do not have any characteristic feature and are
expected to contribute only to a gentle sloping background intensity. The partial PDSs of
the alkali-metal in-plane modes consistently show a double-peak structure of about equal
intensity, and the positions of both peaks scale roughly with the square root of the intercalate
mass. Although such a shape of the PDSs is expected for a two-dimensional solid interacting
with a substrate potential as discussed above, Kamitakahara et al [12] show that a simple
BvK model is inappropriate for modelling the measured PDSs of alkali-metal GICs. A much
better description of the observed PDS was achieved by a model in which the metal–substrate
interaction is retained and described by a frequency ν0. However, the alkali–alkali in-plane
interaction is replaced by a long-range Coulomb interaction between the bare M+ ions. In
the absence of the I–C interaction the Coulomb model predicts that the upper peak occurs
very close to the plasma frequency νp = e/(πMIV )

1/2, where V is the volume per M+ ion.
Turning on the substrate potential a frequency νc = (ν2

0 + ν2
p)

1/2 is predicted for the upper
peak. The calculated spectra for all three stage 1 compounds based on the Coulomb model are
shown in figure 8 by the broken curves. The only fit parameter, ν0, is chosen slightly below the
frequency of the lower peak. This small shift is due to the weak alkali–alkali in-plane shear
interaction. The calculated spectra have been broadened to take instrumental resolution and
anharmonicity effects into account, and in particular for KC8 and RbC8 they reproduce the
measurements rather well.
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Another interesting feature of the Coulomb model is the fact that no conduction electron
screening is required for the prediction of the upper phonon frequency. This implies that the
conduction electron screening for small wavenumbers must be ineffective, i.e. the screening
length of the conduction electrons must be larger than typical I–I atomic distances in the
intercalate layer.

5.2. Stage 2 alkali-metal compounds

Stage 2 compounds differ from stage 1 compounds in many ways. The I–C interaction is
weaker, the alkali-metal areal mass density is reduced and, in most cases, the alkali-metal layers
form incommensurate modulated structures which melt at low temperatures. The intercalate
in-plane modes are expected to be a sensitive probe of the discommensuration domain structure
and of the melting transition. For instance, the first peak which is proportional to the strength
of the I–C in-plane interaction should depend crucially on the location of the intercalate atom
with respect to the substrate.

In the ordered low-temperature state a two-peak structure is again observed in the PDS,
similar to the results on the stage 1 compounds. This is shown for KC24 in figure 9 [11]. In the
low-temperature phase below 123 K, the lower frequency peak is surprisingly well defined,
in spite of the fact that many of the alkali-metal atoms in the discommensuration domain
structure do not sit precisely on commensurate sites with respect to the graphite substrate, and
therefore should experience a distribution of I–C interactions. Upon heating above the melting
temperature some anharmonicity becomes noticeable, but nothing dramatic takes place with
increasing temperature in excess of Tc.

The observed shape of the PDS above Tc is fundamentally different from the expected one
either for a simple liquid or a glassy state. In the first case, diffusive motion and vibrational
excitation become indistinguishable in a region of phonon wavevectors probed there, leading
to a broad quasi-elastic line shape of the dynamical scattering function centred at ν = 0 [13].
In the second case, rather ill defined phonon excitations may exist as known for glassy metals
[14], along with a resolution-limited central peak. In the present case, however, both types of
excitations coexist, solid-like vibrational as well as liquid-like diffusional. The diffusional part,
giving rise to a quasi-elastic peak, cannot be seen with the limited instrumental resolution of
the triple-axis spectrometer using thermal neutrons but was unravelled using higher resolution
time-of-flight spectrometer [15]. The phonon results discussed here indicate that the I–C
in-plane interaction responsible for the lower peak in the PDSs remains important above T
and that collective excitations giving rise to the upper peak persist upon melting. The fact
that these solid-like features can coexist with liquid-like diffusional dynamics was interpreted
as a strong signature for a two-dimensional melting process of a discommensuration domain
structure which does not proceed through a transition of first order, but gradually transforms
into a liquid by unpinning of domain walls via diffusive motion of atoms next to the domain
walls [16]. At the same time, atoms that are located closer to the centre of domains are
structurally more commensurate and give rise to phonon-like excitations. Finally, at high
enough temperatures the alkali-metal layers become rotationally isotropic two-dimensional
liquid when all atoms within the domains take part in the diffusion process. This view has
recently been confirmed through molecular dynamics calculations (MDCs) by Fan et al [17].

Although the above discussion of the intercalate in-plane modes appears reasonable,
recent analysis by Seong and Mahanti [18] show that the peak structure in the PDS requires
a different interpretation. They performed MDC simulations and evaluated the partial PDS of
the intercalant modes in stage 2 RbC24. Based on these studies they argue that the double-peak
structure is hidden within the first experimental peak and cannot be resolved because of the
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Figure 9. PDSs of intercalate in-plane vibrations in stage 2 RbK24 below and above the temperature
for the discommensuration domain transition at 123 K (from [11]).

instrumental resolution. The high-frequency peak is attributed to two effects: (1) multiphonon
corrections and (2) intercalant dynamics perpendicular to the graphite planes. Seong and
Mahanti also calculated the PDS assuming a repulsive screened Coulomb interaction and
comparing the results for the presence and absence of a graphite corrugation potential. Turning
off the substrate potential results in a broad distribution of the PDS lacking the double-peak
feature. Thus the strong substrate potential is essential for the observation of well defined
intercalant in-plane modes at low frequencies as well as for a multiphonon peak at higher
frequencies.

6. Conclusions

Layered structures and compounds offer an unusually rich variety of phonon modes. Unlike
the lattice dynamics of isotropic crystals, the phonon branches in these highly anisotropic
materials can be clearly separated in intralayer and interlayer modes, the energy separation
between both being a direct measure of the anisotropy of the interatomic potentials. While
normally the phonon branches extend over an energy range of about 0–60 meV, the low lying



7690 H Zabel

phonon modes of graphite intercalation compounds terminate at about 25 meV, whereas the
high-energy modes go up to 200 meV. Using inelastic neutron scattering much of the interlayer
modes in layered compounds has been unravelled in the past. However, neutron scattering
is limited to the lower lying modes and the cross over from collective layer-like modes to
the intralayer modes cannot be studied. This gap could be closed using ultra-high-resolution
inelastic x-ray scattering with synchrotron radiation. Promising first experiments have been
carried out by Burkel et al [19], studying the top optic mode of graphite.
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